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Cell Membrane Nonlinear Response to an
Applied Electromagnetic Field

GIORGIO FRANCESCHETTI, SENIOR MEMBER, IEEE, AND INNOCENZO PINTO

Abstract —The transmembrane potential difference induced by an im-
pressed electromagnetic field in a spherical homogeneous cell with nonlin-
ear membrane is obtained by using the Volterra-series formalism. Some
possible generalizations are suggested, and computed results are discussed.

Key words —Biological effects; Cell membranes; Nonlinear response;
Volterra series.

I. INTRODUCTION

ELLULAR [1], as well as intracellular (e.g., nuclear [2]

and mitochondrial [3]), membranes exhibit distinct
nonlinear electrical behavior, due to the potential barrier
V, resulting from the difference between inner and outer
electrolytes and the action of ion-pumps [4].

The referred potential affects the cell homeostasis, and
plays the key role in the physiology of excitable cells (e.g.,
neurons). Accordingly, cell membranes have been recently
indicated as possible elicited sites of action for nonionizing
electromagnetic radiation [5]-[11] to explain, e.g., a num-
ber of definitely nonthermal observed exposure effects on
insulated living tissues [12]-[18] and systems [19]-[22].

The present paper is, to the best of our knowledge, the
first rigorous attempt to study cell interaction with electro-
magnetic fields as a nonlinear boundary-value problem.
This is done in the framework of the Volterra-Series
Method, as formulated in [23]. Our results do confirm the
relevance of nonlinear cell response.

The paper is organized as follows: Section 11 deals with
nonlinear membrane modeling; the response of an in-
sulated spherical cell is obtained in Section III; some
representative computed results are presented in Section
IV, and discussed in Section V.

II. NONLINEAR MEMBRANE MODELING

In the absence of an applied electromagnetic field, the
transmembrane potential difference A¢ is equal to the cell
resting potential V@ (~100 mV, in a typical cell). When
the field is applied, a transmembrane excess potential
(henceforth abbreviated as TEP) 8¢ appears, viz.

Ap =V +8¢. (1)

As a result, a transmembrane current density J,, flows. We
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accordingly let
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Equation (2) is a Volterra functional expansion [23], [24]
(Taylor series with memory), describing the most general
local nonlinear noninstantaneous relationship between J,,
and 0¢, in terms of the Volterra kernels v,. Note that the
first term in (2) is the usual linear response. The Volterra
kernels vy, could be obtained, e.g., by solving into a
Volterra series the celebrated Hodgkin-Huxley equation
[25], possibly augmented to take into account the Ag¢-
dependance of membrane (specific) capacitance [26]. This
task is being presently accomplished [27], and will be the
subject of a forthcoming paper.

Linearization of the HH equation about the resting state
[28] yields the equivalent circuit shown in Fig. 1-Table L.
This circuit does properly account for the “anomalous
inductive reactance” phenomenon observed at ELF [29]; it
doesn’t conversely account for the observed VLF-disper-
sion of membrane (specific) conductance and capacitance
[29]. The latter is usually explained in terms of surface-
adsorbed ion-layers [30] and may be phenomenologically
described by adding the Y, branch shown dashed in Fig.
1-Table I [31]. The linearized equivalent circuit of Fig. 1
may be reasonably expected to be accurate over the
whole RF range. Accordingly, letting Y(w), its complex
frequency-dependent admittance, and denoting as I'j(w)
the Fourier transform of y,(7), we assume

I (w) =Y(w). (5)
We turn now to the nonlinear features of cell membranes.
Area and thickness variations with applied voltage have

been observed irt thin-lipid artificial membranes at ELF
[26], suggesting a voltage dependance of membrane capaci-
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Fig. 1. Cell membrane linearized equivalent circuit.

tance of the form

Cu=C,+B(24)’ (6)
(typical values: C, ~1 uF/cm?, 8 ~1.2-107¢ pF/cm*mV?
[7]). Experimental evidence indicates that B8 is frequency
dependent, and is negligible at and above ~100 KHz, in
squid axon [32].

The current-voltage step-response of (space-clamped)
squid axon membranes [33], on the other hand, is known to
be fairly well approximated at late times (after ~10 ms,
1Le., below ~100 Hz) by a nonlinear diode-like relationship
of the form [33]*

= J,lexp(8¢/Vr)—1] (7)
(typical values: J,~107¢-107° A/cm?, V;~5 mV [1)).
The membrane pore conduction mechanism involves a
number of characteristic times (ion-channel gating times
[35], transit times [34], ion-pump characteristic times, etc.).
At early times (before ~1 ms, i.e., above ~1 KHz), a
substantially linear behavior is observed [33].

Accordingly, we assume that (6) and (7) provide a rea-
sonably good description of membrane properties at fre-
quencies below some 100 Hz; and that the (conduction
plus displacement) transmembrane current density de-
pends linearly on those spectral components of 8¢ whose
frequency exceeds some 100 KHz. Hence, by denoting as
I (wy, w,) and I(w,, w,, w;) the (double, triple) Fourier
transforms of v,(7, %) and y;(7, 7,, 73), respectively, we
get, omitting the details of the calculation

J
=+ j (wl + "-’2)'2.3V(0),

2
rz("-’hwz): 2Vr
0,
I, +j(0;+w,+w)B
J AW T @y T w3 )0,
F3(w13w2’w3)= 6VT3
0,

Note that consistency between the ‘exact’ equation (5)
and the linearized form of equations (6) and (7) in the
static limit requires

J, =V (G, +G,+G,+G,)

C,=C,+C,—BIVOY? 10)
(] b s

'In a more refined model, J,, would possibly be the sum of several
diode-like terms, each related to some specific ion-channel. Such a gener-
alization easily could be included.
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TABLE I
CELL MEMBRANE LINEARIZED EQUIVALENT CIRCUIT ACCORDING
TO [28], [31]
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where G,, G, G,, G,, C,, and C, have been defined in
Table L.

The problem is how to use the frequency domain incom-
plete knowledge of the second- and third-order Volterra
kernels, provided by (8) and (9), plus the full-spectrum
description of the first-order kernel, as represented by (5),
for meaningful analysis of cell-membrane nonlinear re-
sponse.

According to current opinions, as discussed in Section
IV, relevant biochemical and/or CNS-behavioral effects
could come from TEP intermodulation products at fre-
quencies <100 Hz. On the other hand, as shown in Section
I1I, computation of nonlinear TEP responses to time-
harmonic incident fields requires 1) knowledge of the first-
order kernel at the incident frequencies, and 2) knowledge
of the higher order kernels only at the intermodulation
frequencies involved.

Equations (5), (8), and (9) do, therefore, contain suffi-
cient information to study a number of suitably chosen
meaningful cases, as, e.g., done in Section 1V,

(27) "Mw, + w,) <100 Hz
(8)
(27) (w, + w,) >100 KHz
(27) " (w; + w, + wsy) <100 Hz
(27) " (w; + w, + wy) > 100 KHz.

©)

III.

We consider the simplest conceivable model of electro-
magnetic interaction with a living organism: a single
spherical homogeneous cell, embedded in an infinite homo-
geneous medium, as depicted in Fig. 2.

Let {r,0,¢} a spherical cell-centered polar coordinate
system, and assume a time-varying plane-wave incident
field ¢’ linearly polarized along the polar axis.

INSULATED SPHERICAL CELLS
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Fig. 2. Geometry of insulated spherical cell.

For typical cell diameters (from 1p up to 1 mm) a
quasi-static field analysis is appropriate up to frequencies
~10 GHz. Accordingly, all electrical variables of interest
(e.g., fields, currents, etc.) may be derived from a single
scalar potential, ®(r,t). Then, letting ®,(r,?) the cell-
induced potential, we have

O(r,t)=—e'(t)rcos0+.(r,t) (11)

vi®(r,t)=0 (12)
a9 ad
Se* Wr=R+_SI* Wr=R7‘Jm (13)

where S, and S, are the inverse Fourier transforms of the
(complex) conductivities of the external and intracellular
medium, respectively, r =R+ and r= R — denote the
outer and inner cell membrane surfaces, and J,, is the
(inward) transmembrane current density, as defined by (3)
and (1). Equation (13) holds true under the assumption of
a purely radial transmembrane current flow.

To solve (12), together with the linecar and nonlinear
boundary conditions (13), we expand the cell-induced
potential ®(r,¢) into a Volterra series [23] with respect to
the incident field, thus letting

O(r,1)=—Ae'(t)rcos + @ (r, 1)

o0
D (r,1) =00+ Y A™O(r,1)

m=1

(15)

where ®© is the cell resting-potential, viz.

(I)(O):{—V‘O), r<R
0, r>R

(16)

©(™ is a nonlinear homogeneous functional of degree m
with respect to the incident field [23], and A4 is a dummy
dimensionless variable, whose value may be finally set
equal to one.

Inserting (14)-(16) into (12) and (13), and using (1)-(3),

then repeatedly differentiating with respect to 4, and fi-.

nally letting 4 = 0, yields the following hierarchy of linear
boundary value problems:

vIe"(r,1)=0

(17)

(14).
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' TABLE II
MULTIPOLE EXPANSION COEFFICIENTS, UP TO THIRD ORDER

1 A A A A e
- [55 iy ) 52 !

() _ R s oA 1
ot By [(o‘we)e‘ ‘:’,Cg )1
(2) 1 a-la 1o- 2z
G =3, [uf )Rz-cfl)n]

?) |

.CIR(Q‘-CE)/Z] e

(
%
2

o - Zrefess

A
& e2d sl (M- (),
85 v R (G e2amy] g, [0l - w]

(2) . 255 a-lA (2)
ERRRS LA

3 An A A A -, ~ ]
. a5 05 2050 820] "e{*?w“ o [of 2. c§”n],

4 1 ~
gl ] 3 (o)

(3 3[40 8 RLIPSN PN
W LA A 380]7 4 { 8 [V O] o ]
L)}
r=R+]
gpm

(3. .3 pola 3
o g e ey
ar

(m)
S, * [— 8,.¢'(1)cos b + a(gr

1

=5 * [—- 8, (1)cosb +

_ rzR_]

m-—1 @
=7y, * 80 + Y oy, * [605) @]+ ..

k=1
k)
+ .. +Y/<(* [5(1)(1),...,3(1)(1)] ‘ (18)
k factors
where
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and 9,,, is the Kronecker symbol.
Equation (17) is solved by letting
[e o]
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my_ ) n=0
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3

wherein P,(x) is the n-order Legendre polynomial, and the
unknown expansion coefficients C{™ and D{™ are func-
tions of time only.

Inserting (19) into (18) gives a hierarchy of /inear func-
tional equations in the C¢™, D{™ whose formal solutions
up to m =3 have been collected under Table II, wherein
the following shorthands have been used: 6, .=, *,

e
Y= yk(:), and [-]~* denotes the inverse operator.

Several generalizations of the procedure just sketched
may be casily umplemented. Extension to multilayered
spherical as well as cylindrical models (as, e.g., proposed in
[36], in a linear circuit approximation) is straightforward,
although the mathematics can grow pretty cumbersome. It
is also quite possible to deal with eccentrical geometries, by
following the alternative approaches described in [37], [38]
for the linear case.
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TABLE III
TesT CASES
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Fig. 3. First-order relative response (Case-I) as a function of frequency.

IV. COMPUTED RESULTS

The formal solutions collected in Table II allow, in
principle, to compute the TEP response (up to third-order)
to fairly general time-dependent fields, provided the cell-
membrane Volterra kernels y, are known (see (1)).

For the special case where 8¢ is time-harmonic (such
being the incident field), (4) algebrizes, and only discrete
frequency-domain values of the (k-tuple) Fourier trans-
forms of y,(r, -, 7,) do appear [23], [24].

In view of the incomplete knowledge represented by (5),
(8), and (9), we shall confine our attention to time-harmonic
incident fields, and compute, for a number of cases, some
linear and nonlinear TEP responses as functions of the
incident field strength, frequency, and cell diameter. They
have been collected in Table 111, which is also intended as
a guide throughout Figs. 3-8.

The choice of the quoted nonlinear responses was sug-
gested by the following arguments: a) dc TEP’s as steady
effects could produce long-term exposure damages; b) in-
termodulation TEP’s close to EEG or “natural timer”
frequencies [39], which cluster around ~10 Hz, could be
particularly harmful.

For the sake of simplicity, both the external medium and
the cell interior were modeled as 0.1 N,, NaCl solutions at
37 °C, whose complex frequency-dependent conductivity
was computed by means of Stogryn’s formulas [40].
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All quoted TEP responses may be written as

8¢ =38¢(2R,, f,) FQ2R,f) (20)
wherein d¢ (2R, =1 mm, f,=1 MHz) may be found in
Table III, while F(2R,, f) and F(2R, f,) are plotted in
Figs. 3, 5, and 7 and 4, 6, and 8, respectively. From our
results, the following conclusions can be drawn:

a) induced TEP’s ~1 mV (peak) ac, and ~100 pV dc,
close to currently estimated threshold levels for detectable
bioeffects [41]-[43] should be expected at field levels
~100 V/m, at 2R =1 mm below ~100 MHz.

b) at high frequencies, the TEP response becomes nearly
independent of cell diameter. At low frequencies, larger
cells (e.g., embryios, gametes, etc.) exhibit larger responses.
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V. CONCLUSIONS AND RECOMMENDATIONS

We computed the response of a single cell. The case of a
cell lattice (e.g., a living tissue) will be dealt with in a
subsequent paper. No dramatic changes from present re-
sults should be expected, however.

Various possibly relevant phenomena, as, e.g., cell defor-
mation (electrostriction), heating, and inhomogeneity, have
not been included. A comprehensive description of cell
interaction with EM fields, expectedly highly nonlinear,
would benefit in our opinion of the Volterra series for-
malism.

1t has been found that fields of 100 V,/m may trigger
detectable cellular effects, below 100 MHz. The obvious
question is whether comparable fields may be produced
inside a human body, by an unwanted exposure to man-
made EM fields. Results in [44] indicate that fields 100
V/m in air (below current U.S. safety standards) could
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produce comparable intensities in selected spots (e.g., lung)
of a piecewise-homogeneous body model, at ~80 MHz
(first body resonance).

It is important to note, however, that the fields com-
puted in [44] are macroscopic ones, i.e., Space-average
values over distances small compared to wavelength, buz
not necessarily to cell size. We remark that the possible
relevance of local field changes over the space-scale of a
cell, or possibly of the very ion channels, remains to be
ascertained.
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